In diesen Lerneinheiten werden die Grundsätze der Dampftechnik und der Wärmeübertragung erläutert. Außerdem bieten sie einen umfassenden Leitfaden für bewährte technische Verfahren, der alle Aspekte von Dampf- und Kondensatsystemen behandelt – vom Kesselhaus und der Dampfverteilung bis zum Einsatzort, über die Kondensatrückgewinnung und die Rückführung zum Kessel. Praktisch alle wichtigen Anwendungen und Produkte werden besprochen.
In diesem Kapitel werden die zahlreichen Vorteile der Nutzung von Dampf als Energiequelle erläutert. Dampf ist effizient, wirtschaftlich, flexibel und einfach zu handhaben und wird von vielen verschiedenen Branchen genutzt.
Je nachdem, welche Rolle Sie in Ihrem Unternehmen spielen, ist das Thema Dampf für Sie von unterschiedlicher Bedeutung. Von Geschäftsführern und Managern bis hin zu Technikern und Ingenieuren – hier beantworten wir häufige Fragen zu Dampfsystemen.
Der Dampf- und Kondensatkreislauf erklärt wie Dampf erzeugt wird und warum Faktoren wie Speisewasser, Niveauregelung und Abschlammung wichtig sind. Entdecken Sie, wie der Dampf dorthin gelangt, wo er benötigt wird, und warum die Dampfqualität wichtig ist.
Ein detaillierter Blick auf die weltweit anerkannten Einheiten, die in der Dampftechnik verwendet werden. Viele werden Ihnen aufgrund ihrer weiten Verbreitung bekannt sein, während wir auch auf die Einheiten eingehen, die speziell für Dampf relevant sind.
Hier geht es um die Physik, die hinter dem Dampf steckt. Verstehen Sie den Tripelpunkt, die Sattdampftafel, die verschiedenen Trockenheitsgrade und was Entspannungsdampf ist.
Erfahren Sie, warum Heißdampf verwendet wird, welche zwei Theorien zur Messung der Effizienz verwendet werden, die Heißdampftabelle sowie die Vor- und Nachteile.
Erfahren Sie mehr über die Eigenschaften, die einen effektiven Dampfbetrieb gewährleisten, warum nicht kondensierbare Gase wichtig sind und was ein Wasserschlag ist (und warum er vermieden werden sollte).
Ein detaillierter Blick auf die Wärmeübertragung, die Wärmeleitfähigkeit verschiedener Materialien, Hindernisse für die Wärmeübertragung und die verschiedenen Gleichungen, die zur Messung der Effizienz der Wärmeübertragung erforderlich sind.
Entscheidend für ein effizientes System ist, dass wir die Optionen für die Schätzung Ihres Dampfbedarfs sowohl für Anwendungen mit als auch ohne Durchfluss untersuchen.
Es gibt drei Möglichkeiten, den Dampfverbrauch zu berechnen: Durchflussmesser, Kondensatpumpe und Kondensatsammlung.
Warum die Wärmewerte Ihres Geräts nicht unbedingt als bare Münze genommen werden können und welche Faktoren Sie bei der Interpretation der Werte berücksichtigen müssen.
Tanks und Fässer werden häufig zur Aufnahme von Flüssigkeiten verwendet und sind entweder offen oder geschlossen. Hier sehen wir uns an, wie Sie die benötigte Energiemenge für verschiedene Situationen berechnen können.
In diesem Modul wird die indirekte Erwärmung von Flüssigkeiten behandelt, einschließlich der Auslegung, Steuerung und Entwässerung von Rohrheizschlangen und Dampfheizmänteln sowie der Berechnung der Wärmeübertragung.
Bei der gebräuchlichsten Methode zur Beheizung von Kesselspeisebehältern wird die Wärme durch direkten Kontakt zwischen Dampf und der Flüssigkeit übertragen. Die erforderliche Dampfmenge und die Faktoren, die die Wärmeübertragungsrate beeinflussen können, werden hier behandelt.
In diesem Abschnitt wird untersucht, wie sich die dampfführenden Rohre auf die Effizienz des Systems auswirken. Wir betrachten den Unterschied zwischen Aufwärm- und Betriebslast und die Berechnungen, die zur Messung des Wärmeverlusts erforderlich sind. Wir befassen uns auch mit Luftheizungsanlagen und wie diese zu bewerten sind.
In diesem Abschnitt werden verschiedene Arten von Wärmetauschern erläutert und verglichen, der Dampfverbrauch berechnet und weitere Fragen wie die Bedeutung der Anfahrleistung geklärt.
Dampf hat viele andere Verwendungszwecke. In diesem Modul befassen wir uns mit Heizregistern, Durchlauferhitzern, Warmwasserspeichern, Trockenzylindern, Pressen und Begleitheizungsleitungen. Für jede dieser Anwendungen wird untersucht, wie der Dampfverbrauch geschätzt werden kann.
Ein praktischer Ansatz, um zu verstehen, was Entropie ist, wie sie gemessen werden kann und warum Entropie für die Dampftechnik so wichtig ist.
Erfahren Sie, wie Temperatur-Entropie- und Enthalpie-Entropie-Diagramme Ihnen helfen können zu verstehen, wie die kinetische Energie in Dampf funktioniert und warum das Verständnis von Regelventilen so wichtig ist.
Faktoren, die bei der Auswahl von Heizkesseln zu berücksichtigen sind, von lokalen Vorschriften über Brennstoffoptionen bis hin zu den verschiedenen Vor- und Nachteilen, die mit ihnen verbunden sind.
Ein Überblick über die verschiedenen Arten von Großwasserraumkesseln, sowohl nass als auch trocken. Die Entwicklung des Lancashire-Kessels, die Einführung des Kompaktkessels bis hin zum Umkehrflammkessel. Wir befassen uns auch mit den Druck- und Leistungsgrenzen von Großwasserraumkesseln.
Funktionsweise von Wasserrohrkesseln, Varianten, die auf demselben Prinzip beruhen (Trommelkessel und Stirlingkessel), sowie deren Vor- und Nachteile. Wir befassen uns auch mit Kraft-Wärme-Kopplungs-Systemen sowie Gas- und Dampf-Kombikraftwerken.
Eine Erläuterung spezieller Kesseltypen und anderer spezieller Merkmale.
Die drei gebräuchlichsten Methoden zur Messung der Kesselleistung und die Gleichungen, die Sie zu ihrer Berechnung benötigen.
Wie der Wirkungsgrad von Heizkesseln ermittelt wird, und ein Überblick über die verschiedenen Brenneroptionen, ihre Steuerung und ihre Auswirkungen auf die Gesamteffizienz.
Damit Ihr Heizkessel sicher und effizient arbeitet, sind eine Reihe weiterer Ventile, Steuerungen und Zubehörteile erforderlich. Hier erklären wir die Bedeutung jedes einzelnen.
Verschiedene Alternativen zur Kesselauslegung, ihr reibungsloser Betrieb, die Bedeutung des Aufwärmens und die Sicherstellung der richtigen Dampfverteilung.
Eine Untersuchung der zahlreichen Aspekte der Wasserqualität und ihrer möglichen Auswirkungen auf Dampfkessel.
Optionen für die Wasseraufbereitung vor der Verwendung in Dampfkesseln, Gründe für die Vermeidung von Wassermitriss und die Bedeutung der Wasserqualität für verschiedene Kesseltypen.
Überlegungen und Berechnungen, die zur Optimierung Ihrer Speisewassertanks, Pumpen und Rohrleitungen erforderlich sind. Wir untersuchen auch Entlüfter und andere wichtige Elemente, die bei der Planung eines effizienten Systems zu berücksichtigen sind.
Erfahren Sie, wie man den TDS-Wert misst, den richtigen Wert einhält und wie die automatische TDS-Kontrolle zu Kosten- und Effizienzeinsparungen führen kann.
Finden Sie heraus, wie viel Energie eingespart und aufgefangen werden kann, wenn die Absalzung zur TDS-Kontrolle eingesetzt wird. Hierbei werden sowohl die Möglichkeiten der Wärmerückgewinnung und Nutzung des Nachdampfes als auch der Rückgewinnung unter Verwendung von Wärmetauschern bewertet.
Der Begriff beschreibt den Prozess der Entfernung von Schwebstoffen aus einem Kessel. Wir sehen uns an, wie dieser Vorgang abläuft, welche Möglichkeiten es für die Abschlammung gibt und welche Vorschriften den Betrieb regeln.
Für den sicheren und effizienten Betrieb von Heizkesseln ist es wichtig, den Wasserstand zu überwachen und bei Bedarf anzupassen. Wir sehen uns an, warum dies wichtig ist und wie sich unterschiedliche Lastzustände auf den Wasserstand auswirken.
Erfahren Sie, wie Füllstandskontrollen, Niedrig- und Hochwasserwarnungen funktionieren und lernen Sie die Unterschiede zwischen Leitfähigkeitselektroden und kapazitiven Elektroden kennen. Schwimmersteuerungen und Differenzdruckmessumformer werden ebenfalls behandelt.
Hier sehen wir uns genau an, wie der Wasserstand im Kessel automatisch ermittelt werden kann und wo Probleme auftreten können.
Zu viel oder zu wenig Wasser in Ihrem Heizkessel ist etwas, das vermieden werden muss. Dieser Abschnitt befasst sich mit den Möglichkeiten, die Sie haben, um diese Situation zu vermeiden.
Wie man den Wasserstand in Heizkesseln genau misst und welche Methode sich für Ihr System am besten eignet.
Eine Zusammenfassung wie Kesselprüfungen regelmäßig durchgeführt werden unter besonderer Berücksichtigung der britischen Vorschriften.
Ein umfassender Überblick darüber, wie sie unerwünschte Gase aus dem Wasser von Dampfsystemen entfernen, sowie über die Grundsätze und Praktiken ihrer Verwendung.
Alles, was Sie über Dampfspeicher wissen müssen, von der Bedarfsermittlung über Dimensionierung, Konstruktion und Betrieb bis hin zu Steuerungen, Armaturen und Injektoren. Umfassende Berechnungen sind ebenfalls enthalten.
An examination of the fundamental principles behind measuring the flow of steam, including density, viscosity, velocity, the Reynolds number, and flow regimes.
An in-depth look at the science behind flowmetering, the equations used to maximise its effectiveness, and how ultrasound is used to measure flowrate.
Discover the seven types of flowmeter used to measure steam and condensate. We consider how each works, their advantages and disadvantages, and where they are often found.
Here we break down how flowmeters interpret data, why pressure variations must be considered, and understand how dryness fractions and superheat can impact accuracy.
With over a third of flowmetering problems stemming from poor installation, it's important to get the design and installation right. This section will give you a checklist for selecting the right flowmeters, and a comprehensive set of recommendations for their installation.
Here we investigate why automatic controls are more reliable than manual options, and look at how controls deal with processes that use steam, water, compressed air, and hot oils.
Put simply, the two basic control options are either on/off or continuous control. This module looks in detail at the implications of each, paying close attention to the three elements of continuous control: proportional, integral, and derivative.
What is a control loop, what are the differences between control loop options (open, closed, single, multi, cascade), what happens in each control loop, and various process reactions are all answered in this topic.
How to Choose Which Controls to Use? An overview of your options (self-activating, pneumatic, electric, electro-pneumatic), a look at valves and actuators, and choices of controllers. Guided by consideration of safety, stability, and accuracy.
A detailed look at the elements involved in the installation and commissioning of controls, including how the Ziegler-Nicholls method can be used for setting controllers.
Looking at the evolution of IT helping improve control, up to the introduction of fieldbus technology in streamlining operations.
Get to know the different types of control valves used in steam and fluid systems. The differences between linear and rotary valves, with two or three-ports, is simply explained using animated diagrams.
Valves work by altering either flowrate or differential pressure. Gain an understanding of the flow coefficient, and how it is used to compare valve performance.
Here you will find out how to correctly size valves using either equations or charts. The difference between imperial and metric measurements is explained, how two- and three-port valves differ in how they operate, and why valve authority, cavitation, and flashing need to be considered.
Your complete guide to unravelling the complicated subject of steam control valve sizing. Find out how to use formulae and steam tables to make sure you have the right sized valve, the issues you may need to consider (velocity, noise, erosion, drying, and superheated steam), together with a checklist of the 20 major factors to assess your system.
Different types of valve plug have different flow characteristics. This section gives you a thorough understanding of the three main types (fast opening, linear, and equal percentage), and using detailed case studies, how the flowrates are calculated.
This section looks at how actuators enable valves to work, the differences between pneumatic and electric versions, how reverse acting and direct acting actuators work, and why positioners are sometimes also essential for safe and accurate control.
What they are, when to use them, and the many variations available. We also look at advanced control systems using the HART protocol and fieldbus standards.
The differences between vapour tension systems and liquid-filled systems are explained, with animated illustrations showing how different options work. We also look at where and why self-actuating temperature controls are used.
These systems are a vital safety feature. They operate by either adjustment at a sensor, an actuator, or by remote operation. We also examine high limit cut-out devices and the many environments where they are used.
Usually used to reduce the amount of steam pressure in a system, self-acting pressure controls tend to be either direct acting or pilot operated. This section illustrates both, looking at choices that determine where each would be used. We also look at pressure maintaining valves, and why these are sometimes needed.
In this comprehensive review of the methods used to control steam pressure, we look at the advantages and disadvantages of each, the situations where they are usually employed, and important points to note. We also touch upon alternative methods sometimes used.
When it is the temperature that must be controlled, there are five main methods for doing so. Here we look at their advantages and disadvantages, and where they are usually used. We also survey some of the other options for controlling steam temperature.
An overview of the different types of level control systems used, with particular focus on float and solid probe types, most commonly used in the steam and condensate loop. There is a focus on conductivity and capacitance level controls.
How and where your control system is installed with have a marked effect on its accuracy and lifetime. Here we look at the factors to consider to ensure it works at its best for as long as possible.
Safety valves are essential devices used to protect from steam overpressure. Here we look at how this might happen, the range of types available, how they work, and the regulatory frameworks for them.
Discover in detail the many variations of safety valves, how they operate (including equations illustrating the force needed to do so), and diagrams of each type of valve.
Including the criteria you will need to consider, how safety valves are properly installed, and where, and the difference between MAWP and MAAP.
A detailed look at how to size valves according to various standards, with diagrams and equations for each case. We also look at more complicated solutions like two-phase flow and superheat.
For it to work correctly, it's vital you know all the factors to make the right decision. Everything you need to know is covered here.
They might be the most effective, but safety valves are not the only way you can deal with excess pressure. This section looks at the alternatives and gives a full glossary of terms related to this topic.
Here we examine what is the steam and condensate loop, the working pressure of a system, and see why pressure-reducing valves are used.
Covering the international standards, schedule numbers, piping materials, and detailed information on the equations, charts, and tables needed to pick the correct piping. Includes comprehensive appendices.
We look at the overall layout, condensate drain points, using branch lines, steam separators and strainers, how to calculate your running load, and what to look out for to avoid waterhammer.
Because they are carrying hot fluids or steam, allowance must be made for expansion. Here we cover the various methods of making sure your pipes are properly installed.
How to effectively remove air and noncondensable gases from a steam system, and how to calculate, and reduce, heat losses from pipework. Includes relevant international standards covering the subject.
The main job of a steam trap is to remove condensate, air, and any noncondensable gases from a steam system whilst minimising the escape of live steam. Here we look at why this is necessary, how they do this, their basic operation, and the standards applied to steam traps.
These work by responding to the surrounding steam temperature. There are three main types: liquid expansion traps, bimetallic traps, and balanced pressure traps. We look at each, with animated diagrams showing how they work, and the pros and cons of each.
These use the different densities between steam and water (condensate) to operate. There are two main types: the ball float trap, and the inverted bucket trap. Able to remove large volumes of condensate, mechanical steam traps are used in a wide range of process applications. Discover how each works, and their advantages and disadvantages.
It is a very robust form of trap, with only one moving part, that operates using the dynamic effect of flash steam as it passes through the trap. We examine the traditional thermodynamic steam trap, the impulse type, the labyrinth type, and finally fixed orifice traps. How they're made, their uses and pros and cons are discussed.
Other things to take into account when choosing steam traps: waterhammer, dirt, strainers, steam locking, group trapping, diffusers, and special needs, like vacuum drainage and trapping for temperature-controlled processes.
Giving tables and advice on picking the right options for these uses, from boiling pans to bulk storage tanks, to autoclaves and sterilisers.
Advice on choosing traps for hot air dryers, drying coils, multi-bank pipe dryers, drying cylinders, and multi-cylinder dryers.
Looking at the right steam traps for garment presses, ironers and calenders, tumble dryers, dry cleaning machines, and various types of presses, including tyre presses.
Advice on the ideal steam traps for fixed and tilting boiling pans, retorts, industrial autoclaves, industrial digesters, hot tables, brewing coppers, evaporators, and vulcanisers.
Best and acceptable alternative choices of steam traps for calorifiers, heater batteries, radiant panels and strips, radiators and convection cabinets, unit heaters and air batteries, and overhead pipe coils.
Covering aspects of the steam mains operations, including horizontal runs, drain pocket dimensions, separators, steam header drainage, and terminal ends. We also look at process vats and small coil-heated tanks.
Because air is an insulator, it works against the efficient heat transfer of a steam system. This section looks at how to detect air in the system, and how to remove it effectively.
Examining many of the cases where air venting will be needed, including the steam mains, jacketed pans, and rotating cylinders. We also consider the use of steam trap bypasses, and how thermostatic steam traps can also be used as air vents.
Examining routine maintenance, replacement of internal parts, and potentially replacing steam traps. However, accurately identifying issues with steam traps requires expert knowledge, and we look at manual, remote, and automatic monitoring to determine if there actually is a problem.
Often steam traps are blamed for energy losses simply to gain a new sale for an alternative. This section honestly looks at the three types of main steam trap and demonstrates just how little energy steam traps use. trap types.
Used to stop the flow of fluid into an area of the system, we look at the different types of gate valves, globe valves, piston valves, and diaphragm valves. We also look at options for valve stems, and how to seal them.
Sometimes known as quarter-turn valves, we delve into ball valves and their various options, and butterfly valves. This section also gives details on selecting isolation valves, including their sizing, with comprehensive charts and the equations for getting to the right choice.
Also known as non-return valves, a check valve will only allow flow in one direction. The main types used for steam are lift, swing, wafer, and disc check valves. Ball and diaphragm check valves are usually used in fluid applications. Formulae for calculating pressure drops are also given.
Usually classified as either Y-type or basket type, strainers prevent damage from debris in flowing liquids or gases, so reducing plant downtime and unplanned maintenance costs. Here we take a detailed look at the options, and how to select the right size, depending upon your processes.
Important tools in reducing 'wet steam', separators come in various forms. We look at baffle, cyclonic, and coalescence separators, detailing which option to choose, and how to calculate the dryness fraction.
Though relatively small in size, these play a big part in the smooth running of energy-efficient steam systems. We examine what each does, and how they work.
Investigating how to remove condensate from heat exchangers fitted with a temperature control valve on the steam line, and a steam trapping device on the condensate line from the heat exchanger.
The equations needed to determine the design loads and steam pressure and flowrate requirements for heat exchange applications.
Often heat exchangers are bigger than needed for the job they need to do. This section looks at the implications of this, the effects on issues like selecting the right steam traps for them, and details the equations needed to deal correctly with this common problem.
Step-by-step illustration for calculating stall and how to select the right condensate removal solution for a heat exchange application.
Using this simple method, stall can be worked out for an situation with a constant secondary flowrate with a varying inlet temperature.
Sometimes constant secondary flow is not required, such as providing hot water to batch processes like tank or vats. This example shows how to use the chart in these cases.
In cases where constant flow is secondary, there is varying inlet temperature, and constant outlet temperature.
Methods of dealing with condensate drainage problems include gravity drainage, adding an automatic pump trap device, and controlling the pressure in the steam space.
Why condensate recovery and return are useful, saving energy costs, reducing environmental discharges, and keeping water treatment costs down. Covers calculations for potential savings.
A fully-illustrated, detailed look at the design and layout of condensate return pipework. This includes the effect of trap types used, how different pressures impact the system, and the discharge of condensate into flooded mains.
How to size condensate lines to and from steam traps, with examples and formulae needed using the condensate pipe sizing chart.
This comprehensive introduction covers pumping terminology, the operation, application and various benefits of electric centrifugal and mechanical condensate pumps. There are sizing examples for both pumps and pump discharge lines.
What is flash steam, how much is available, how it can be recovered, controlling flash steam, and its applications.
Here we look at moving condensate to a higher level return line, and ways to cope with contaminated condensate.
First we cover the issues to think about when selecting a desuperheater, such as turndown ratio. Then we survey the types of desuperheater available, including indirect contact, direct contact, water spray, and axial injection desuperheaters. Consideration of the advantages and disadvantages of each is offered.
The difference between superheated and desuperheated steam is detailed, where both types of steam are typically used, and calculations for desuperheating.
A range of other desuperheaters are commonly used. Here we look at venturi type, steam atomising, variable orifice, combined pressure control valve and desuperheater, and compare the options alongside one another.
There are a range of factors that must be considered. This section looks at key issues, including the properties of the cooling water itself, the installation of the desuperheater, pressure control, and sensor positioning.