

Condenseur de vapeur de revaporisation

Description

Le condenseur type EVC est un échangeur spécialement conçu pour récupérer la chaleur des vapeurs de revaporisation qui sont perdus via l'évent des bâches atmosphériques, des collecteurs de condensats etc. Le condenseur type EVC permet de réutiliser la chaleur des vapeurs peut être réutilisé pour la préchauffage de par exemple l'eau de processus.

Le Spirax - Sarco EVC permettra d'améliorer l'efficacité du système de vapeur par économies d'énergie et respecte l'environnement par la réduction des émissions de CO₂ + carbone et la suppression des rejets visibles de l'atmosphère.

La conception des condenseurs type EVC est basé sur nos échangeurs de chaleur à tubes ondulées et à plaque tubulaire fixe avec une calandre entièrement soudée munie d'un compensateur de dilatation à ondes multiples.

Construction entièrement en acier inoxydable, sans joint d'étanchéité (sauf brides) sans chicane. La surface d'échange est constituée de tubes ondulés droits en acier inoxydable AISI 316, conçus pour des fluides à faible viscosité travaillant en écoulements turbulents. La plaque tubulaire est du type intégral et sert de brides de raccordement.

Standards

La conception et la fabrication sont conformes à la Directive Européenne sur les appareils à pression (PED) 2014/68/EU.

Certificats

Cet appareil est disponible avec un certificat 'Typical Test Report'. Note: toute demande de certificat doit être clairement spécifiée lors de la passation de la commande.

Limites d'emploi

TMA	Température maximale admissible		Calandre Tubes		200°C
PMA	Pression maximale admissible	Cal		-10 à 200°C	12 bar eff.

Les épreuves hydrauliques sont réalisées à 21 bar pour les tubes et l'enveloppe avec pression timbre 12 bar eff. Jusqu'à ce que la pression soit conforme au paragraphe 7.4 du chapitre 1 de la directive (PED) 2014/68/EU.

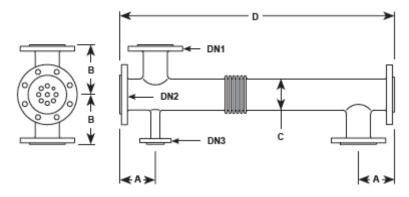
Sélection et dimensionnement

Contacter Spirax-Sarco. Nous utilisons un logiciel spécialement développé pour l'optimisation des conditions de service et le calcul du rendement thermique de l'échangeur. Les compétences et l'étendu de la gamme des appareils Spirax Sarco sont là pour vous fournir la solution complète pour vos transferts de chaleur, les conseils pour la meilleure régulation de votre système et les accessoires pour votre échangeur.

EVC Fiche Technique

Désignation

Les différents exécutions standards disponibles sont définies par la désignation du modèle, exécutions spéciales possibles sur demande.


Modèle	EVC = Condenseur vapeur de revaporisation	EVC
Diamètre calandre	1.1/2", 2", 3", 4", 6" et 10"	3"
Matière tubes	SX = inox AISI 316	SX
Longueur	1 = 1 mètre	1
Raccordements	F = UNI 2278/2229 brides PN16	FE
	FE = EN1092-1 brides PN16	FE
Code design	Blanco = VSR	
	E = EN13445	E
Pression de timbre calandre	V = 12 bar eff.	V
Assemblement plannes / tubes	Blanco = Dudgionné	
Accouplement plaques / tubes	S = Soudé	
	Blanco = Article 3.3	
Catégorie PED	CI = Catégorie I	CI
_	CII = Catégorie II	

Exemple de sélection: EVC - 3" - SX - 1 - FE - E - V - CI

Construction

Désignation	Materière	
Calandre	Acier inox	A312 TP304
Compensateur	Acier inox	A240 TP321
Plaque tubulaire	Acier inox	A182 F316
Brides	Acier inox	A182 F304
Tubes ondulés	Acier inox	A249 TP316

Dimensions (approximatives) en mm et poids en kg

EVC	DN1	DN2	DN3	Α	В	С	D	Poids
1 ½"	32	40	15	94	140	48,5	1000	13,2
2"	40	50	15	90	140	60,3	1000	16,5
3"	65	80	15	110	160	88,9	1000	23,0
4"	80	100	25	125	180	114,3	1000	36,4
6"	100	150	25	140	220	168,3	1000	68,2
8"	125	200	32	160	250	219,1	1000	106,0
10"	150	250	40	180	280	273,0	1000	145,0

Notes:

- Tolérances suivant:

 $A = \pm 3mm$ $B = \pm 3mm$

 $B = \pm 3mm$ $- L = \pm 6mm$

Rotation des brides = ± 1°

Alignement = ± 3 mm

- Brides suivant EN 1092-1 PN16 ou ASME B16.5 classe 150.
- La détermination de la catégorie s'effectue pour des fluides du groupe 2 (fluides non dangereux) suivant le paragraphe 3.1 de la directive.

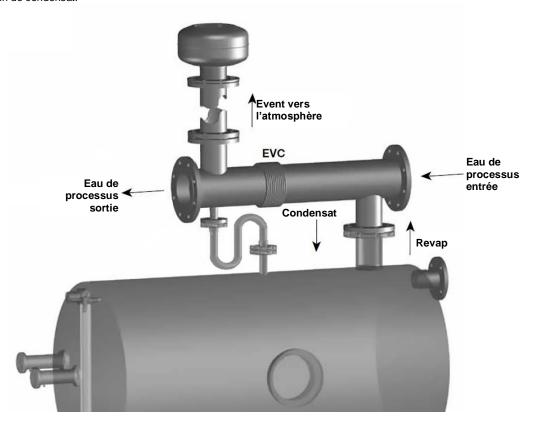
Fiche Technique EVC

Sécurité, montage et entretien

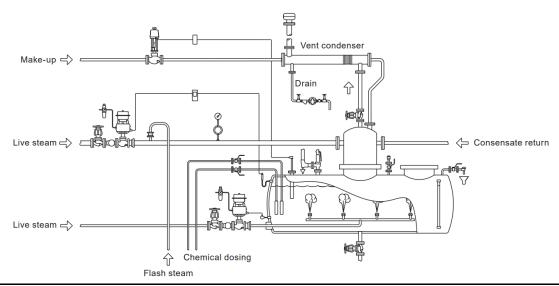
Les instructions de montage et d'entretien est fournie avec l'échangeur.

Notes d'installation :

- Le montage est dépendant de l'application et aux conditions de service. Normalement, les condenseurs EVC sont installés en position horizontale.


- Le raccordement sur la tuyauterie doit être effectué de manière à ce que le condenseur type EVC ne soit pas sujet aux contraintes dues au poids ou à la dilatation thermique. Seule une extrémité du condenseur doit être fixe. L'autre extrémité doit pouvoir se déplacer de façon axiale pour permettre la libre dilatation des tubes due aux variations des températures de service. A cette fin, des guides coulissants, construits spécifiquement, seront utilisés.
- Avant toute utilisation, vérifier que les conditions de service prévues correspondent aux limites admissibles de l'échangeur ci-dessous. Les limites sont indiquées sur la plaque signalétique.
- Au démarrage et en service, l'air doit être bien évacué.
- Nous conseillons l'emploi d'isolation quand la température de la calandre est plus élevée que la température ambiante.

Recyclage


Ce produit est recyclable sans aucun danger écologique.

Installation type

Unité de récupération de condensat:

Dégazeur thermique :

TI-P222-02 / TES-BEf-04 - 3 / 5 -

EVC Fiche Technique

Réduction des émissions.

Avec le prix actuel de l'énergie et la nécessité de réduire les émissions, un système vapeur / condensat ne peut pas se permettre de laisser échapper la vapeur revaporisation dans l'atmosphère. Un système typique intégrera un récepteur condensat qui permet à la vapeur de revaporisation de se disperser dans l'atmosphère.

L'évacuation de la vapeur de revaporisation assure que le récepteur condensat n'est jamais sous pression. Pour éviter la perte de vapeur de revaporisation dans l'atmosphère, il faut installer des dispositifs tels qu'un condenseur de revaporisation dans l'évent.

Selon les coûts d'installation, en général, le coût d'un condenseur de vapeur revaporisation est recupéré dans les dix mois de fonctionnement.

Le condenseur permet notamment de récupérer l'énergie de la vapeur de revaporisation et d'utiliser cette énergie pour chauffer un fluide pour un processus. L'autre avantage est la réduction des émissions: en récupérant l'énergie de la vapeur revaporisation, les chaudières doivent produire moins de vapeur.

Industriepark 5

Fiche Technique EVC

TI-P222-02 / TES-BEf-04 - 5 / 5 -