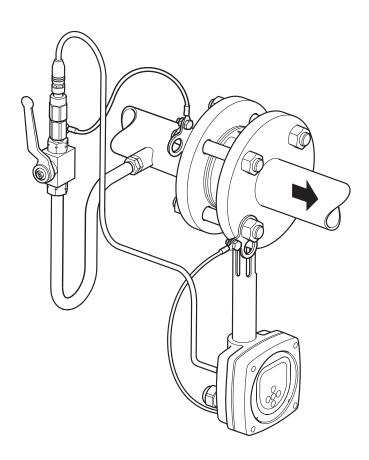


TI-P192-01 MI Issue 3

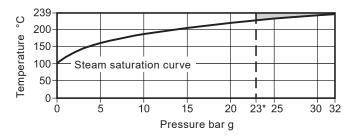
Saturated and Superheated Steam Service

Description

The Spirax Sarco TVA flowmeter is designed for use on saturated and superheated steam (with the dedicated pressure sensor kit) and operates on the target principle, by measuring the force produced on a moving cone by the fluid flow. This force is then converted into density compensated mass flowrate and is transmitted via a single loop powered 4-20 mA and pulsed output. TVA flowmeters also incorporate a totalised flow function and EAI 232C (RS 232) or EAI 485C (RS485) Modbus communications.

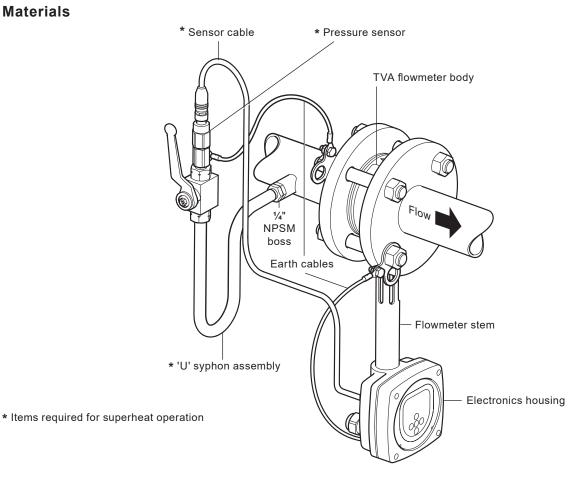

Sizes and pipe connections

DN50, DN80 and DN100


The TVA flowmeter is of wafer design, suitable for fitting between the following flanges:

- EN 1092 PN16, PN25 and PN40
- BS 10 Table H
- ASME B 16.5 Class 150 and Class 300
- Japanese Industrial Standard JIS 20
- Korean Standard KS 20

Note: Spirax Sarco TVA flowmeters should be installed in pipework manufactured to BS 1600, ASME B 36.10 Schedule 40 or EN 10216-2 / EN 10216-5 equivalent. For systems with different standards/schedules, please contact Spirax Sarco.

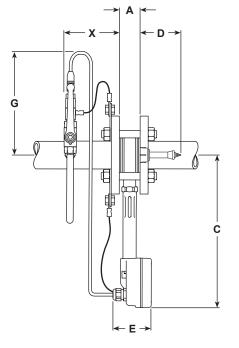

Pressure/temperature limits

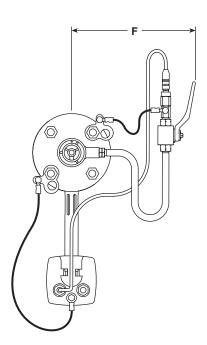
The product should not be used in this region due to software limitations.

Maximum design pressure			32 bar g @ 239 °C	
Maximum design temperature			239 °C	
Minimum design temperature			0 °C (non-freezing)	
		Superheated steam *	23 bar g @ 239 °C	
Maximum operating pressure	Horizontal flow	Saturated steam	32 bar g @ 239 °	
	Vertical flow	Saturated steam only	7 bar g @ 170 °C	
Minimum operating pressure			0.6 bar g	
Maximum operating temperature	(saturation)		239 °C	
Minimum operating temperature			0 °C (non-freezing)	
Maximum electronics ambient ter	mperature		55 °C	
Maximum electronics humidity le	vel		90% RH (non-condensing)	
Designed for a maximum cold hy	draulic test pressure of 52 l	bar g		
High pressure syphon tube as	sembly			
Maximum design pressure			80 bar g	
Maximum design temperature			450 °C	
Maximum working conditions			60 bar g @ 450 °C	
Pressure sensing kit				
Maximum operating temperature			125 °C	
Minimum operating temperature			0 °C (non-freezing)	
Maximum operating pressure			50 bar g	
Maximum ambient temperature (cable+connector)		70 °C	

Materials

Unit	Part		Material						
	Flowmeter	body	Stainless steel S.316 1.4408 CF8M						
	Internals		431 S29/S303/S304/S316						
TVA	Spring		Inconel X750 or equivalent						
	Flowmeter stem		Stainless steel 300 series						
	Electronic	s housing	Aluminium LM25						
	Cable		Polyvinyl chloride (PVC)						
	Sensor housing		AISI 304 Stainless steel 1.4301						
Pressure sensing kit	Sensor		AISI 630 Stainless steel 1.4542						
	'O' ring		Nitrile Butadiene Rubber (NBR)						
	Adaptor		AISI 431 Stainless steel 1.4057						
	Tube		Carbon steel BS 3602: Part.1 1987 CFS 360 (zinc plated/passivated)						
High pressure syphon tube assembly	Body		Carbon steel						
	Valve	Seat	PEEK/ Polymain						


Technical data


IP rating	IP65 with correct cable glands						
Dewer europhy	Loop powered						
Power supply	with optional RS485: 24VDC						
Outputs	4-20mA (not available with RS485 option)						
	Pulsed output (V max 28 Vdc R min 10 kΩ)						
O	Modbus EIA 232C (RS 232C)						
Communication port	with optional RS485: EIA 485 (RS 485C)						

Dimensions/weights (approximate) in mm and kg

Note:

Dimension 'X' is a recommended minimum distance between the pressure tapping and the flowmeter. However it can be installed at any distance provided the cable allows (Standard cable length is 1 m).

Size	Α	Flowmeter OD	С	D	E	F	G	x	Weight		
									TVA	Superheat kit	'U' syphon
DN50	35	103	322	125	65	250	160	300	2.67	0.3	0.5
DN80	45	138	334	115	65	270	160	300	4.38	0.3	0.5
DN100	60	162	344	155	65	280	160	300	7.28	0.3	0.5

Performance

The TVA flowmeter has inbuilt electronics which give a density compensated output. An LCD display is incorporated within the electronics head. The M750 display unit can be used to provide a remote display function if required, utilising the 4 - 20 mA output.

System uncertainty, to 95% confidence (2 STD): (in accordance with ISO 17025) ±2% of measured value from 10% to 100% of maximum rated flow. ±0.2% FSD, from 2% to 10% of maximum rated flow. Turndown : up to 50:1

As the TVA flowmeter is a self contained unit, the uncertainty quoted is for the complete system. Many flowmeters claim a pipeline unit uncertainty and for a true system uncertainty, the individual uncertainty values of any associated equipment, such as DP cells, need to be added to the pipeline value.

Pressure drop

The pressure drop across the TVA is nominally 750 mbar (300 ins water gauge) at maximum rated flow for the DN50, and 500 mbar (200 inches water gauge) for the DN80 and DN100.

TVA flowmeter flow capacities and pressure drops

	QE litr	es/min	Maximum DP			
Flowmeter type	Maximum	Minimum	Wg	m bar		
DN50	300	3	300	750		
DN80	770	8	200	498		
DN100	1 200	12	200	498		

Sizing the TVA flowmeter for saturated steam (kg/h) (Horizontal orientation)

Maximum flowrates in kg/h at different pressures (bar g).

Notes:

1 - Maximum steam flowrates are calculated at maximum differential pressure.

2 - For vertical capacities please contact Spirax Sarco.

3 - The table below is a guide only.

4 - For superheated capacities please use the sizing software on our website www.spiraxsarco.com

Size	Steam pres	sure bar g	1	3	5	7	10	12	15	20	25	30	32	bar g
	Q _E = 300	Max. flow	619	859	1 042	1 196	1 395	1 513	1 676	1 918	2 135	2 335	2 409	kg/h
DN50		Min. flow	12	17	21	24	28	30	33	38	43	47	60	kg/h
	Q _E = 770	Max. flow	1 588	2 204	2 674	3 070	3 581	3 885	4 301	4 922	5 480	5 994	6 183	kg/h
DN80		Min. flow	32	44	53	61	72	78	86	98	110	120	128	kg/h
	Q _E = 1 200	Max. flow	2 475	3 435	4 167	4 784	5 581	6 054	6 703	7 671	8 540	9 341	9 637	kg/h
UN100		Min. flow	49	69	83	96	112	121	134	153	171	187	192	kg/h

Safety information, installation and maintenance

For full details see the Installation and Maintenance Instructions (IM-P192-02) supplied with the product.

The following main points are given for guidance only:

- 1. The TVA flowmeter should be mounted with a minimum of 6 straight pipe diameters upstream and 3 downstream. No valves, fittings or cross sectional changes are permitted within these pipe lengths. Where an increase in nominal pipe diameter is required, upstream of the flowmeter, the length of straight pipe should be increased to 12 diameters. Similarly, where a Spirax Sarco TVA is installed downstream of two 90° bends in two planes, a pressure reducing valve or a partly open valve, 12 upstream pipe diameters should be allowed.
- 2. It is important that the internal upstream and downstream diameters of pipe are smooth. Ideally seamless pipes should be used and there should be no intrusive weld beads on the internal diameter. It is also recommended that slip-on flanges are used to avoid this.
- 3. Care should be taken to install the TVA flowmeter concentrically in the line. If this is not done, flow measurement errors may occur.
- 4. The TVA flowmeter can be installed in any orientation up to a line pressure of 7 bar g whilst conditions are saturated. When conditions are superheated then the TVA flowmeter can only be installed in horizontal pipework, with the electronics below the pipeline.
- 5. As for all steam flowmetering installations, good basic steam engineering practices should be followed:
 - Correct line drainage through adequate trapping.
 - Good alignment and support of associated pipework.
 - Line size changes achieved by the use of eccentric reducers.
 - Do not lag (insulate) the TVA body or the mating flanges.
- 6. The TVA flowmeter must not be installed outside where it can be subjected to driving rain or where it is liable to freeze.

How to order

Saturated Service Example: 1 off Spirax Sarco DN100 TVA flowmeter for installation between EN 1092 PN40 flanges for use on saturated steam at 10 bar g - Maximum flow 5 581 kg/h.

Superheated Service Example: 1 off Spirax Sarco DN100 TVA flowmeter, Pressure sensing kit and 'U' syphon, for installation between EN 1092 PN40 flanges for use on superheated steam at 10 bar g.

Note: For details of the optional remote display see the relevant Spirax Sarco M750 literature.

Spare parts and accessories

- Spare electronics front panel (with standard RS 232C Communications)
- Spare electronics front panel (with RS485 Communications converter)